Project A4
Metabolic fitness landscapes for evolutionary predictions
Martin Lercher, U Düsseldorf | web | email
We test the repeatability and predictability of the evolutionary adaptation of bacterial metabolism. This project develops an advanced modeling framework for metabolism and growth in prokaryotes, which explicitly includes metabolite concentrations and reaction kinetics. We then use this model to perform evolutionary simulations. In experiments, we follow the evolution of different E. coli strains in environments to which they are not yet optimally adapted. We measure changes in protein and metabolite concentrations, asking: How similar are the evolutionary trajectories of strains that are under the same selection pressure? Do these trajectories agree with our model predictions?
Predictability in Evolution
Collaborative Research Center 1310
Publications
Growth-mediated negative feedback shapes quantitative antibiotic response
Angermayr S.A., Pang T.Y., Chevereau G., Mitosch K., Lercher M.J., Bollenbach T., Mol Syst Biol., 20. September 2022, https://doi.org/10.15252/msb.202110490
On the optimality of the enzyme–substrate relationship in bacteria
Dourado H., Mori M., Hwa T., Lercher M.J. , PLOS Biol. 19(10): e3001416, 26. October 2021, https://doi.org/10.1371/journal.pbio.3001416
Deep learning allows genome-scale prediction of Michaelis constants from structural features
Kroll A., Engqvist M.K.M., Heckmann D., Lercher M.J., PLOS Biol. 19(10): e3001402, 19. October 2021, https://doi.org/10.1371/journal.pbio.3001402
The protein translation machinery is expressed for maximal efficiency in Escherichia coli
Hu X., Dourado H., Schubert P. & Lercher M. J., Nat Commun 11, 5260, 16. October 2020, https://doi.org/10.1038/s41467-020-18948-x
An analytical theory of balanced cellular growth
Dourado H., and Lercher M. J., Nat Commun 11, 1226, 6. March 2020, https://doi.org/10.1038/s41467-020-14751-w
Pang T. J., Lercher M. J., PNAS, 18. December 2018, https://doi.org/10.1073/pnas.1718997115
Heckmann D., Lloyd C. J., Mih N., Ha Y., Zielinski D. C., Haiman Z. B., Desouki A. A., Lercher M. J., Palsson B. O., Nature Communications 9: 5252, 7. December 2018, https://doi.org/10.1038/s41467-018-07652-6
Alzoubi D., Desouki A. A., Lercher M. J., Scientific Reports 8: 17252, 22. November 2018, https://doi.org/10.1038/s41598-018-35092-1
Pang T. Y., Lercher M. J., Scientific Reports 7: 40294, 9. January 2017, https://doi.org/10.1038/srep40294
Energy efficiency trade-offs drive nucleotide usage in transcribed regions
Chen W.-H., Lu G., Bork P., Hu S., and Lercher M.J., Nature Communications volume 7, 21. April 2016, http://dx.doi.org/10.1038/ncomms11334
Recombinant transfer in the basic genome of Escherichia coli
Dixit P.D., Pang T.Y., Studier F.W., and Maslov S., Proc. Natl. Acad. Sci. USA 112: 9070-9075, 3. June 2015, https://doi.org/10.1073/pnas.1510839112